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magnetized electron gas ‘
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Georges Cédex, France
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Abstract. The charge density induced by a point charge immersed in an electron gas, in the
presence of a magnetic field, is studied using linear response theory, for a range of metallic
densities and fields up to 4 x 10° T. The response function, inclusive of an approximate field
factor for exchange and correlation effects, is first presented in the cument density fenctional
theory formalism, Numerical methods are then described. Results for the embedding energy
of the peint charge and non-spberical deformatien of the charge density are reported. They are
discussed in the perspective of building a statistical model of electronic structure in the presence
of strong magnetic fields.

1. Introduction

The fast development of high-magnetic-field research with generators producing fields up to
B = 1000 T [1] prompts studies of the electronic structure of materials submitted to intense
fields. For instance, the change in resistivity and equation of state of metals under these
extreme conditions is of primary interest for predicting and-explaining the experiments. Such
studies of the electronic structure of magnetic systems were initiated twenty years ago, using
Thomas—Fermi-like models, for applications in the domain of astrophysics [2-12]. As is
known from their intensive application to the case B = 0, the approaches based on statistical
theories are particularly well suited for equation of state calculations. Their extension to the
magnetic case raises a number of difficulties. Because the interesting quantity is the change
in some property with the magnetic field, the theory must be able to treat continuously
increasing magnetic field intensities, starting from B = 0. In this respect, models restricted
to conditions where the first Landan band only is populated are of limited interest. It follows
from this remark that, since low fields are equivalent to large wave vectors in the magnetic
response function, the low-g corrections involved in a first-order gradient expansion are
not sufficient. A second difficulty is related to the geometry. Whereas the solution of
the statistical equations for a compressed atom is spherically symmetric in the B = 0
case, the charge density undergoes a non-spherical deformation when a strong magnetic
field is applied. This non-spherical effect does not appear at the Thomas—Fermi level of
approximation, but results from non-local contributions in the kinetic energy functional [8].
These remarks imply that the range of wave vectors which must be accurately treated has
to be chosen with care when one attempts to define a relevant statistical approximation.
The present work is a preliminary study whose aim is to determine the domain of
densities and magnetic fields where the intermediate wave vectors g (typically 0.1 £ gl <
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10, with { the magnetic length) play an important role in the description of the charge
density. This importance is directly related to the magnitude of the non-spherical effects.
Thus, it is useful to know, for a given average electron density, above what field intensity
the non-spherical deformation begins to be significant and must be included in the models,
as a first-order perturbation or to all orders. This is our main object in this work. A
simplified problem is solved which, although it does not represent any true real system,
particularly at low average electron density, is thought to describe correctly the trends
of the non-spherical deformation. We consider a coulombic test charge immersed in a
uniform electron gas and calculate the electron charge distribution induced around it, using
the magnetic linear response function. The analysis of the displaced eleciron charge in
Legendre polynomials at several distances from the test charge shows the importance of
the non-spherical components. Another quantity of interest, relevant to equation of state
studies, the embedding energy of the test charge, is calculated.

The paper is organized as follows. Section 2 is devoted to a presentation of magnetic
linear response in the framework of current density functional theory, with a particular
emphasis on the local field corrections. In section 3, we describe the density profile
calculations and comment on some numerical aspects. The results are presented and
discussed in section 4.

2. Linear response function in a magnetic field

2.1. Connection with energy functionals

The current density functional theory (CDFT) provides a very convenient framework for
the discussion of the linear response function of an electron gas in a magnetic field [13].
Let us start with the CDFT expression of the total energy:

2
Eln(r), 3p ()] = Ln(r), 5o (r)] + Egln(r}] + f n(r) [Vex:(‘-") + %;AZ(T)} d&*r

te [ 5o AW Er + Exeln(r), j, ()], W

In this expression, e is the electron charge, m the electron mass, 7, is the non-interacting
‘pseudo’-kinetic energy (corresponding to the operator —h%/2mV?), Ey is the Hartree
energy and E,; is the exchange and correction (x¢) energy. The electron density is n(r) and
Jp(r) is the paramagnetic (orbital) current. The external potential has a scalar component
V.r: and a vector component A such that the applied magnetic field is B = curl A. In this
study, we neglect the magnetic moment Landé g factor. The total physical current J is
given by

J(r) = Gp(7) + (e/mIn(r).Alr). @

The CDFT has demonstrated that the total energy in (1) is a unique functional of both n(r)
and j,{r) which reaches its minimum for the exact values of these independent quantities.
In practice, it is more convenient to work with a new variable

u(r) = Jp(r)/n(r) 3)
instead of j,(r). The Kohn-Sham equations associated with the CDFT are
8Ti[n(r), w(m))/on(r) + S Exc[n(r), u(r)]/én(r} + Veu (r) + Vi (1)

+eu(r) - A() + (2 /2m)AX(r) = p )
8T;[n(r), u(r)l/du(r) + $E . ln(r), u(r)l/u(r) + en(r) A(r) = 0. 3)
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Now we consider the case of the uniform system of density n with Vix, = 0. In this case,
the physical current J vanishes, so the paramagnetic current is jpo(r) = —(e/m)nA(r).
Then, a small scalar perturbing potential §V (including the external and Hartree screening
potentials) is applied, and we study the linear response §n and §u. Linearizing (4) and (3)
gives -

(S5 + Sxc)dn+ U+ U) - 8u+8V =0 ()]

U + ch)f's”- + (M, + My)du =0 7 M
where the following notations are used:

Ss = {82 Ty [n(r), u™))/én(r)én(r)ll

Sze = {82 Exe[n(r), w(m)1/8n(r)sn(r)}lo ®
Us = {8*T;[n(r), u(m))/3n(r)ulr)}o + e A(r) ©)
Use = {82 Exc[n(r), u(r)}/én(@)sulri}lo

M, = {8* T [n(r), w(r)]/su(r)sulr)}o 10

M, = {EZExC[n(T'), w(r)]/du{ridulr)iy.

The functional derivatives in (8) are scalar quantities, those in (9} ate vectors and those in
(10) are tensors. The notation |p means that these derivatives are taken for the reference
(uniform) system. From (6) and (7), we obtain for the interacting response function x

1/x = 8V/dn = —(S; + S5:0) = Uy + Upe)' - W + W)~ (U + Uyo). (11
The counterpart of this function if xc effects are omitted is
/x°=-5 - Ul- MU, (12)

A lot of work has been done on this response function, and explicit expressions for x° may
be found in the literature [14-17].

2.2, Local field corrections

The local field factor X due to xc effects is defined by writing down the equation relating
dn and §V:

(1/xMén =8V + Xén | (13a)

= (1/x)én -+ Xén (135)

SO .
X = S+ WUy + Ur) + (M + M) WU, + Upe) = U - MU, 7(130)

In the absence of a magnetic field, the local field factor reduces to Sy;. The magnetic
field modifies X in two ways. First, S, itself is different in the presence of B; second,
there are additional terms in (13¢). A common approach is to estimate X in the local
density approximation (LDA). In the LDA, the unknown exact functional E,.[n(r), 2(r)]
is approximated using local values of the xc energy of the uniform electron gas EX (n, w).
At each point in space, n is replaced with n(r) and the cycloton frequency @ with
w{r) = [V x w(r)} (in the uniform electron gas, w = |V x uy(r)| as a consequence
of J(r)=0)

Exeln(r), ()] — EX(n(r), () = f Fre(r), 0 () &r. (14)
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Thus, an approximate S, can be calculated from (8) using the fit proposed by Skudlarski
and Vignale for B% (n, ) that they computed in the RPA approximation [18].

A first approximation for the additional term in X is to evaluate it entirely in the LDA,
that is using the kinetic functional of the uniform system:

Tin(r), u(r)] = [ £ o) &r + f PR r) &r (15)

to calculate the quantities entering (13¢). This LDA approximation provides the exact low-¢
limit of the functional T;. We easily obtain the following expressions in Fourier space:

5:(a) = () +0lg"

Us(q) = (fidnge: x ig + O

M(g) = —mnl +-0(g")  Mi(@) = O™
where (), is the second derivative of f;(n, ®) with respect to the variables n and o, €,
a unit vector in the direction of B, | the identity matrix and » the density of the uniform
electron gas. With similar definitions for the xc contribution, we arrive at the following
form of (13¢), in the low-g limit:

X — See = g2 ¥ee +0(g") (16a)

Yee = (U/mm) (| (i) + (Frehnal? = 1001 (165)
with g, the component of g perpendicular to the field. The right-hand side term of (164),
which vanishes identically when B = 0, is of order g*. If this teom were taken into account,
the expansion of Sy.(g) should be carried out to order g? also. For B = 0, the g* term in
See(g} does not vanish entirely so that the approximation does not reduce to the standard

LDA. Thus, to keep on with the same level of approximation as in the B = 0 case, these
q2 terms should be discarded, leading to the local field factor

X = 8zelg = 0) = (feelm, C”)):zfn-

Unfortunately, this approximation fails for large B because it produces roots in the static
dielectric constant. Thus, the g dependence of X must be taken into account for large
magnetic fields. Paralleling the approximation made in the B = 0 case [19], we write

X(Q) = Sec/ (U + g%18xcl/270) + g1 Yee /(1 + 4317, {an

The second term is roughly proportional to [U « Uy|. According to the results of Vignale
and Skudlarski [20] relative to the cumrent J(g) beyond the LDA, U, (q) decreases rather
fast with ¢, /. To take this effect into account, we have divided the LDA form of U,(g) by
{1+ g31%), where [ is the magnetic length such that

2 =n/mo.

The same damping factor has been applied to U.(g). With the form in (17) for X (g) the
dielectric constant

(@) =1 — (we?/q” + X(@)x°(@)
has no zero anymore. But, clearly, 2 more fundamental study of the xc¢ effects in the

magnetic dielectric constant is called for.
2.3. Explicit expression of the non-interacting response function

The first complete analysis of the RPA response function of the electron gas in a magnetic
field was performed by Greene and co-workers [14]. Many other studies of this function
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have been reported more recently in the literature [15-17]. Here we reproduce the most
compact form of x%(g) adapted to numerical calculations:

1 = 1 (Gl + k;)% — k¢
0 § :z : z d i
x q e rr—— K.. [z _]_n _ .,

@ 7*he j=0i=0 il )‘lzl (gl — k) — k?

(18)

The summation over spin results in a factor of two included in (18). This expression
involves a double sum on Landau band indices j and {; j runs over the occupied bands
and i over all the bands. In the logarithm, the momenta are defined as

k} = (2m /R (u — (7 + Do) P = 2(u/ho — (G + 1)) (19)

and similarly for kf. Note that the latter is a negative quantity for { > N. The function £j;
is defined for i > j by

Kij(s) = GG/ LT (5 12)] exp(—s*/2) (20)

where L}_" is a generalized Laguerre polynomial. If { < j in the double sum, then the
indices must be interchanged in K;;.

It is clear from (18) that ¥°(q) is only a function of the reduced variable g! (the product
of the wave vector with the magnetic length). Thus, the limit at large g is also the limit
at large magnetic length, i.e. at small B. This means that the asymptotic form of x%q)
. is that of the Lindhard function x’(g). We have checked this conclusion numerically. In
fact, the convergence of the sum on i in (18) is very slow. In figures 1 and 2 we see
examples of how the magnetic response function reduces to the Lindhard function at large
values of s =.gq1f. If M is the maximum value of i that has to be included in the sum
to reach convergence, M increases very fast with the value of s for which continuity is
observed. For 2 given M, the value of s for which the asymptotic form is reached is rather
insensitive to y = p/hew. Thus, the wave vector above which the two response functions
become equivalent is of the form ¢/kr = constant/,/¥, where & is the Fermi momentum.

3. Calculation of the density displaced by a test charge

3.1, Electron density

Starting from (134) with the external potential V.., of a i)oiiit charge, we obtain the density
in Fourier space:
sn(q) = F(g)dne*/g* (21a)
F(g) = x"()/11 — 4me*/q” + X (@)x°@)]. (215}
Figures 3 and 4 show the behaviour of F{g) (with ¢4, = 0} in two typical cases. In figure 3,
for 7, = 2, B = 0.2Bp (By = 2.35 x 10° G), there is a kink in the curve due to the existence
of a peak in x%(q) because two Landau bands are populated. In the case of figure 4 (r, = 2,

B = 1By}, the Fermi level lies in the first Landan band so this effect does not appear. In
coordinate space, the charge density is

oo +o 4 2
snlr) = @ry-2-? f sds Jp (sf’-) f - dt cos (xi) Flg)— 22)
o l —co l g
where Jp s the Bessel function, { the magnetic length, p the component of 7 perpendicular
to B and z the component along B; s is the component of ¢! perpendicular to B and ¢ the
component of gl along B.
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Figure 1. The response function x%(g) for the magnetized electron gas at », = "2 and
BfBy = 0.2, as a function of gtl, for gz/ = 0. Several curves are presented {dashed lines)
corresponding to increasing maximum values A (30, 60, 80 and 110) of the band index in the

sum over excited Landau bands {see (18)). Full convergence is obtained for M — co. The
solid curve is the Lindhard asymptotic form.
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Figure 2. The same as figure 1, but for 8/By = 2.

For small values of the magnetic field, the treatment of large wave vectors is easier if
the difference between F(g) and its limit at zero field is introduced. This limit is obtained
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Figure 3. The full density response function F{g), such that sn{g) = F(gq)éV.x (g) for the
magnetized electron gas at r, = 2 and B/Bg = 0.2, as a function of g1 1, for g,/ = 0.
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Figure 4. The same as figure 3, but for B/Bp =2.

by replacing x°(g) with the Lindhard form x*(g) in (21). Thus, the density becomes

] 4 2
Sn(r) = (2)~4~ fo sds Jo (s?) f dt cos (:%) (F(q)—FL(q})( b )

e g*

o0 2
+20m)7Y fo w*du jo (u%) Fhig) (ﬂ;-;;). 23)

400
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Table 1. Values of the second-order epergy £ defined in (24), in Hartrees, and of the charge
density n(0) on the test charge, in ¢ 3 (23), for various values of the electron density parameter
ry and of the magnetic field. N is the index of the highest populated Landau band. For the
energy and the charge density, two seres of numbers are shown, one with no exchange and
correlation contribution in the response function (X = 0) and the other with the local field factor
X (g} defined in (17).

SE n(0)
rn B/Bgy N (X=0) &E X=0 s
1 00 —05863 ~0.6077 03786  0.3907
02 8 —05851 -—0.6063 03781  0.3901
05 3 —0.5927 —06147 03823 03947
1.0 1 —-05906 -06124 03811 03935
2.0 0 —05872 ~-06102 03789 03919
200 - —03M9 -03963 008237 0.08630
0.2 1 —03720 —03876 0.08207 0.08499
0.5 0 —03754 —03982 - 008217 0.08631
1.0 0 —04597 —05029 010370 0.11240
2.0 0 —05342 —05%44 015110 016990
3 00 ~028535 —03060 003335 003530
0.2 0 —02806 —02997 003287 0.03465
0.5 0 03464 —03855 004235 0.04658
1.0 0 —03945 —04467 006055 0.06942
2.0 0 —04332 —05028 009126 0.11040
400 —0.2339 ~—02538 001748 0.01564
02 0 —02570 -—02868 0.01911 0.02086
0.5 0 -03077 -03509 0.02826 0.03236
1.0 0 —03398 —03967 004210 005074
2.0 0 —03663 . —04388 006290 0.08016
5 00 —0.1998 —02190 0.01057 0.01134
0.2 0 —02373 —02699 001329 001486
05 0 —02747 -03206 002083 0.02486
1.0 0 —02989 —03580 003113 0.03916
2.0 0 —03200 -03920 004712 006173

The last contrbution, where j; stands for the spherical Bessel function with u = gl is
calculated in spherical symmetry. The very large momenta, which are necessary for an
accurate description of the density close to the test charge, are included with much less
numerical effort, and the integration domain for the first contribution can be reduced.

3.2. Second-order energy

Using the CDFT formulation of section 2, it is easy to establish the expression of the test
charge immersion energy in the magnetized electron gas. The first-order contribution (in
8 Vyye) 1s the chemical potential . The second-order contribution is

1 4met
E=-(2mn""
3 2( ) [ 7

The subtraction—addition technique described just above can also be used in the energy
calculation when necessary.

4ret
F (Q)—gz—dBQ . (24)
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Figure 5. The second-order embedding energy of the point charge in the magnetized electron
gas, in Hartree units, as a function of B/Bp and for five values of #, (1, 2, 3, 4 and 5). Solid
curves join points having the same highest populated Landau band only.
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. Figure 6. The charge density induced in the magnetized electron gas, as a function of distance
in units of the magnetic length, at ry = 2 and B/Bp = 2. The four highest curves correspond
to four directions with respect to" B{# = 0). The lowest curve shows the density in the absence
of a magnetic field.

3.3. The non-spherical shape of the density

We arrive here at the motivation of this study: the non-spherical deformation of the density
induced by the magnetic field. The density dn(r) calculated as described above is analysed
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Figure 7. The same as figure 6, but for B/Bg = 0.2.

n{LB)-n{r,0)
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0,025 \
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Figure 8. The difference between the charge densities with and without the magnetic field, at
ry =2 and B/By = 2, along four directions at angles & =0, = /6, 7/3 and 7 /2 with the field.

in Legendre polynomials. At a given distance from the test charge, one writes

dn(r) =Y _ a(r)Picos8) (25)

=0
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Figure 9. The same as figure 8, but for 8/By = 0.2

2z x 100
do 3
/ 2
¢ 7
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Figure 10. The ratio of the coefficient a; of the first non-spherical Legendre polynomial in
the expansion of the charge density to the spherical compenent coefficient ag (see (25)), versus
magnetic field B/By and for the five valaes of r,. The distance at which the expansion is done
isr=r /2. '

where 8 is the angle between 7 and the magnetic field. This expansion involves even angular

momenta only. The ratio of the coefficients a; to ap gives a measure 'of the rion-spherical
shape of the density.
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Table 2. The non-sphericity of the chatge density displaced around a test charge in a magnetized
electron ges. The electron gas parameter is r,. The magnetic feld is B in units of By. The
charge density is expanded in Legendre polynomials with coefficients ¢; (I even). The ratios
ax{r) jag(r) x 100 (first row) and a4 (r) /ap(r) x 100 (second row) are shown for three distances
r/ry from the test charge.

rn BfBy rlry =05 rie=1.0 rfrs =15

1 02 =00079 00002 -0.0080 —0.0001 0.007¢ 0.0033
0.5 0.0363 ~0.0001 0.0260 —0.0022 —0.0424 —0.0203
1.0 0.0017 —0.0024 —0.1592 —0.0300 -0.2539% —0.0821
20 -0.1205 —0.0078 —0.7172 —0.0742 —0.8564 —0.0968

2 02 —0.0028 —0.0006 0.0121 —0.0025 0.0366 —0.0006
05 -0.0082 -0.0019 —0.1164 —0.0192 -0.1526 —0.0304
1.0 0.6921 00272 08995 0.1427 0.2729 0.0854
2.0 35363 04%44 28790 19797 04127 12595

3 02 —0.0040 —0.0604 —0.0308 —0.0019 —0.0292 0.0029
0.5 03762 0.0220 04400 01198 0.0997 0.0993
1.0 16142 02813 09618 05077 0.0399 0.3982
2.0 38058 15169 08317 16102 0.0252 03380

4 02 0.0656 0.000% 00887 —0.0003 0.0043 -0.0164
Q.5 06495 01023 04018 03561 00024 0.157%
L0 16397 0.6015 03409 0.7028 —0.0061 0.1244
2.0 23485 LB235 03258 07088 —0.0095 0.1122

5 02 01428 0.0114 0.1369 0.0570 0.0124  0.040%
0.5 0.7130 0.2037 0.1843  0.3425 —0.0104  0.0600
1.0 12175 07718 0.1568 0.3660 —0.0113  0.0497
20 13141 14157 0.1507 03701 —0.0127 0.0447

4. Resnlts

‘We have performed calculations for a test charge immersed in an electron gas of density
corresponding to values of the electron parameter r, = 1, 2, 3, 4 and 5, and for values of
the magnetic field (in units of By = 2.35 x 10° G) B/Bp = 0.2, 0.5, 1 and 2. The values
of the chemical potential 1 comresponding to these parameters are shown in the appendix,
together with the description of an analytical approximation for y = p/hw, as a function
of density, which simplifies the calculation.

The results obtained for the second-order energy S E defined in (24) are shown in table 1,
with and without xc effects in the response function (i.e. X = 0 In the second case). As a
general rule, the magnitude of £ increases with the field, as displayed in figure 5. There
is a discontinuity in this energy as a function of B each time a new Landau band begins to
be populated, because x (g = 0) is singular for the corresponding values of the field, Also,
it is clear that the higher the density the weaker the relative change in energy because the
rigidity of the system increases with the density. The effect of exchange and correlation on
8E is important. At zero field, the xc effect goes from 3.7% at ry = 1 t0 9.6% at r, = 5,
but for the maximum field B/Bg = 2, it increases from 3.9% atr, = 1 to 22.5% at r, = 5.

The charge density on the test charge 5n(0) is also shown in table 1. The trends are
the same as for the energy. The effect of the field is smail at r, = 1, but considerable at
ry = 5, where 8r(0) changes by a factor 5.5 from B/By = 0 to 2. The xc effect is also
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Figare 11. The same as figure 10, but for the coefficient a4.

enhanced at low density and large field. For all the cases listed here, we have found that the
careful treatment of large wave vectors in the response function is crucial in order to obtain
an accurate density at the nucleus, If the numerical cut-off on ¢ is too low, the density
is underestimated and approaches the point charge with a zero slope instead of a finite
slope, because the exact g2 decay of the response function is replaced with an erroneous
exponential decay. In figure 6 we see the charge density dn(r) around the test charge as
a function of distance r/I for r; =2 and B/By = 2. In this case, [ = 0.707 an. There
are four curves comesponding to the angular directions 8§ = 0 (along B), 7/6, 7/3 and
7 /2 (perpendicular to B). A last curve represents the charge density in the absence of a
magnetic field. The effect of the field is very strong, as proved by the important differences
between the curves with and without B. The density decreases much more slowly in the
z direction, as already shown by Tomishima and Shinjo in the Thomas—Fermi theory for
atoms in a strong magnetic field with inhomogeneity corrections [8]. In the present case,
the non-spherical shape of the density is obvious and is a dominant character of the physical
system, In figure 7, we have displayed the same curves, but for B/ By = 0.2, still at 7, = 2.
The situation is entirely different for this low-field: the curves with and without field are
almost identical. The differences sn(r, B) — n{r, 0) are magnified in figures 8 and 9.

_The analysis of the non-sphericity in the charge density is shown in table 2. The ratios
az(r)/ag(r) = 100 and a4 (r}/ae(r) x 100, at three distances » from the test charge, are given
for all the r, and B values considered in this study. These ratios increase with B, although
a saturation occurs in ax(r)/ag(r) at B/By = 1 for r, = 4 and 5, probably in favour of
higher angular momenta in the expansion of (25). This effect appears clearly in figures 10
and 11, where the ratios are shown for r/r; = 0.5. For magnetic fields not exceeding By,
the non-sphericity is small at r, = L. It increases very fast-with r;. If one chooses the
onset of significant non-sphericity when the ratios reach the value of 1% for r/r, = 0.5,
this onset occurs around B = Bg (1 au) for any value of r;.

It appears from the results reported above that, in the domain of metallic densities and
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for magnetic fields larger than the reference field By, the non-spherical shape of the electron
charge is an important physical feature. This feature should be treated accurately in any
model dealing with the modifications brought by such high magnetic fields to the structure
of dense electronic systems. For lower fields, a perturbation approach is sufficient.

Appendix A. An analytical approximation for the chemical potential as a function of
density

The electron density # of a uniform electron gas in a magnetic field is related to the chemical
potential g by
V2 (R X 1
-3 .
= e - —_
%z (so ) ; 7 (J + 2) (AD)

where gp is the Bohr radius, w the cyclotron frequency, &g the electrostatic energy e2/ag
and

y = n/ho. (A2)
N is the index of the highest occupied Landau band. Defining the reduced density
x = n(w®/V2) (eo/R0)*? (A3)

we have obtained expressions for y = fy(x). First, it is easy to derive exact expressions
for the two lowest bands. In the case N = 0 we have

y=3+x*
and inthe case N =1
y =3+ (x* — 1)2 /452,

For larger values of N, we have derived accurate approximate expressions. First, for a
given N, one can see that, for x very large, ¥ behaves as

y = [1/(N + 1°1x* + 0(x%).
At the bottom of band N, one has obviously
y = yn + (x — x5)? + constant
with
N
yw=N+1 x~=_z;\/}. (A4)
=
Now, when a new band opens, one must have
yn+ 1= fyv{xnsr).
The simplest expression satisfying all these constraints is

¥ = yy + 102 = x3)?/4x2 by + daw(x® — x3))/ oy +an (x2 ~ x3)]. (A3)
xpn and vy are defined in (A4). The other constants are
ay = 1/(N +1)° (A6)
by = [4dn/(dy — 4x% DN(xh | — and®) (A7a)

dy = Xygq — X3 (A7b)
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(AS5) is general and includes also the cases N = 0 and 1. We have checked its numerical
accuracy up to N = 9. ' An average error sy in each band is defined as follows. In
a given band N, we use a mesh of hundred peints for the variable y defined in (A2):
Yy = y~ +q/100 (g = 1-100). For each of these y,. we calculate the corresponding
density x, (Al), and then the approximate value of y = fi(x,) (AS). The average relative
error in band N is

1 1 s 1/2 )
En = y—N[-@ qg;(yq — Fa (%)) } . (AB)

The values of these errors are shown in table Al. They are of the order of 1077 in the
highest band considered. Thus, the numerical fit proposed is accurate enough for practical
applications. It avoids the numerical solution of an implicit equation to obtain y. Once the
reduced density is given, the index N of the Landau band is determined by location of x
according to Xy € x < Xy, and then y is explicitly calculated from the approximant in
(AS). .

Table Al.
YN 10%en
2 25 0.035 _
3 35 0423
4 45 0.729
5 55 0915 _
6 65 1.0z
7 75 107
8 85 108
S 25 107

The values of the quantity y — %, related to the chemical potential, for all the cases

studied in this work are listed in table A2.

Table A2,
v BjBy=02 B/By=05 B/Bo=1 B/By=2
1 8728 3.157 1.284 0.347

2 1901 0.347 0434(—1)  0542(-2)
3 0476 0.305(—1)  0.381(—2) 0.476(—3)
4 0847(—1) 05822y  0.678(=3) 0.847(—4)
5 0222(~1)  0.142(=2)  0178(=3) 0.222(-4)
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