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Commissariat a 1'Energie Atomique, Centre d'Emdes de Limeil-Valenton, 94195 Wlleneuve St 
Georges Chdex, France 

Received 11 April 1995 

Abstract The charge density induced by a point charge immersed in an electron gas. in the 
presence of a magnetic field, is studied using linear response theory, for a range of metallic 
densities and fields up to 4 x 10' T. The response function, inclusive of an approximate field 
fanor for exchange and correlation effects, is first presented in the current density functional 
theory formalism. Numerical methods are then described. Results for the embedding energy 
of the point charge and non-spherical deformation of thc chxge density are reported. They are 
discussed in Ihe perspective of building a statistical model of electronic swcture in the presence 
of strong magnetic fields. 

1. Introduction 

The fast development of high-magnetic-field research with generators producing fields up to 
B = 1000 T [I] prompts studies of the electronic structure of materials submitted to intense 
fields. For instance, the change in resistivity and equation of state of metals under these 
extreme conditions is of primary interest for predicting and~explaining the experiments. Such 
studies of the electronic structure of magnetic systems were initiated twenty years ago, using 
Thomas-Fermi-like models, for applications in the domain of astrophysics [Z-IZ]. As is 
known from their intensive application to the case B = 0, the approaches based on statistical 
theories are particularly well suited for equation of state calculations. Their extension to the 
magnetic case raises a number of difficulties. Because the interesting quantity is the change 
in some property with the magnetic field, the theory must be able to treat continuously 
increasing magnetic field intensities, staaing from 5 = 0. In this respect, models restricted 
to conditions where the first Landau band only is populated are of limited interest. It follows 
from this remark that, since low fields are equivalent to large wave vectors in the magnetic 
response function, the low-q corrections involved in a first-order gradient expansion are 
not sufficient. A second difficulty is related to the geometry. Whereas the solution of 
the statistical equations for a compressed atom is spherically symmetric in the B = 0 
case, the charge density undergoes a non-spherical deformation when a strong magnetic 
field is applied. This non-spherical effect does not appear at the Thomas-Fermi level of 
approximation, but results from non-local contributions in the kinetic energy functional IS]. 
These remarks imply that the range of wave vectors which must be accurately treated has 
to be chosen with care when one attempts to define a relevant statistical approximation. 

The present work is a preliinary study whose aim is to determine the domain of 
densities and magnetic fields where the intermediate wave vectors q (typically 0.1 < ql < 
0953-8984/95/326545+16$19.50 @ 1995 IOP Publishing Ltd 6545 
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10, with 1 the magnetic length) play an important role in the description of the charge 
density. This importance is directly related to the magnitude of the non-spherical effects. 
Thus, it is useful to know, for a given average electron density, above what field intensity 
the non-spherical deformation begins to be significant and must be included in the models, 
as a first-order perturbation or to all orders. This is our main object in this work. A 
simplified problem is solved which, although it does not represent any true real system, 
particularly at low average electron density, is thought to describe correctly the trends 
of the non-spherical deformation. We consider a coulombic test charge immersed in a 
uniform electron gas and calculate the electron charge distribution induced around it, using 
the magnetic linear response function. The analysis of the displaced electron charge in 
Legendre polynomials at several distances from the test charge shows the importance of 
the non-spherical components. Another quantity of interest, relevant to equation of state 
studies, the embedding energy of the test charge, is calculated. 

The paper is organized as follows. Section 2 is devoted to a presentation of magnetic 
linear response in the framework of current density functional theory, with a particular 
emphasis on the local field correcfions. In section 3, we describe the density profile 
calculations and comment on some numerical aspects. The results are presented and 
discussed in section 4. 
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2. Linear response function in a magnetic field 

2.1. Connection with energyfunctionals 

The current density functional theory (CDFT) provides a very convenient framework for 
the discussion of the linear response function of an electron gas in a magnetic field 1131. 
Let us start with the CDFT expression of the total energy: 

E[~(r),j,,(r)l = G[n(r) , jp(~)l  + EH[n(T)I + / n(r)  [ V ~ T )  + --A2(r) d% 

(1) 

In this expression, e is the electron charge, m the electron mass, r, is the non-interacting 
‘pseudo’-kinetic energy (corresponding to the operator -A2/2mV2), E H  is the Hartree 
energy and E,, is the exchange and correction (xc) energy. The electron density is n(r)  and 
j,(r) is the paramagnetic (orbital) current. The extemal potential has a scalar component 
V,, and a vector component A such that the applied magnetic field is B = curl A. In this 
study, we neglect the magnetic moment Land6 g factor. The total physical current J is 
given by 

1 e2 
2m 

+e / j,, (r)  .A(r)  d3r + Exc[n(r) ,  j,,(r)I. 

J(7) = jp(r) + ( e / m M r ) A ( r ) .  (2) 
The CDFT has demonstrated that the total energy in (1) is a unique functional of both n(r) 
and j,,(r) which reaches its minimum for the exact values of these independent quantities. 
In practice, it is more convenient to work with a new variable 

W) = jp(WW (3) 
instead of j,,(r). The KohnSham equations associated with the CDFT are 

Wr[n(r), u ( W W r )  + aExc[n(r), u ( W W r )  + V d r )  + V d r )  
+eu(r)  . A(r) + (e2/2m)A2(r) = p 

GrJn(r),  u(r)I/Su(~) + GE,In(r), u(~)l/BuL(r) + en(r )A(r )  = 0. 
(4) 

(5) 
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Now we consider the case of the uniform system of density n with V,, = 0. In this case, 
the physical current J vanishes, so the paramagnetic current is jn0(r) = - ( e / m ) n A ( r ) .  
Then, a small scalar perturbing potential SV (including the external and Hartree screening 
potentials) is applied, and we study the linear response 6n and 6u. Linearizing (4) and (5) 
gives 

where the following notations are used 

The functional derivatives in (8) are scalar quantities, those in (9) &e vectors and those in 
(10) are tensors. The notation 10 means that these derivatives i re  taken for the reference 
(uniform) system. From (6) and (7), we obtain for the interacting.response function x 

The counterpart of this function if x c  effects are omitted is 

1 /x0  = -S, - U ! .  MF'U,. 

A lot of work has been done on this response function, and explicit expressions for xo may 
be found in the literature [14-171. 

2.2. Local field corrections 

The local field factor X due to x c  effects is defined by writing down the equation relating 
Sn and 6V:  

so 

X = S,, + (U, + U.c)' . (M,r + Mxc)-'(Vy + Uxc) - CJ! . M,r'U,. " ( 1 3 ~ )  

In the absence of a magnetic field, the local field factor reduces to SIC. The magnetic 
field modifies X in two ways. First, S,, itself is different in the presence of E ;  second, 
there are additional terms in (13c). A common approach is to estimate X in the local 
density approximation (LDA). In the LDA, the unknown exact functional Exc[n(r),  U(?-)] 

is approximated using local values of the xc energy of the uniform electron gas E;&, o). 
At each point in space, n is replaced with n ( r )  and the cyclotron frequency o with 
w ( r )  = IV x u(r)l (in the uniform electron gas, w = IV x uO(r)I as a consequence 
of J ( r )  = 0): 

~ ~ 

ExcMr) .  ~ ( 7 9 1  + E ; & W 3  o ( ~ ) )  = f&(r), 4~)) d'r. (14) s 
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Thus, an approximate S,, can be calculated from (8) using the fit proposed by Shdlarski 
and Vignale for E&(n, o) that they computed in the RPA approximation [lS]. 

A first approximation for the additional term in X is to evaluate it entirely in the LDA, 
that is using the kinetic functional of the uniform system: 

TJn(r), 4 ~ ) 1  = f ( n ( ~ ) ,  d~)) d3r + 2 n ( r ) u 2 ( d d 3 r  (15) 

to calculate the quantities entering (13~). This LDA approximation provides the exact low-q 
limit of the functional r,. We easily obtain the following expressions in Fourier space: 

F Perrot and A Grimaldi 

s s” 
U q )  = (h)L + 0(q2)  
&(q) = ( f ) k e z  x iq + o(q2) 
Mdq) = -mnl + O(q2) W&) = O(q2) 

where (Iq),”, is the second derivative off&, w )  with respect to the variables n and w,  eL 
a unit vector in the direction of B, I the identity matrix and n the density of the uniform 
electron gas. With similar definitions for the xc contribution, we arrive at the following 
form of (13c), in the low-q limit: 

x - s,, = qiyxc + o(q4) 
Y,, = (1/mn)(I(f&, + (f&IZ - I(A)LI’) 

(164 
(16b) 

with q1  the component of q perpendicular to the field. The right-hand side term of (16~). 
which vanishes identically when B = 0, is of order q2. If this term were taken into account, 
the expansion of S,,(q) should be carried out to order q2 also. For B = 0, the q2 term in 
S,,(q) does not vanish entirely so that the approximation does not reduce to the standard 
LDA. Thus, to keep on with the same level of approximation as in the B = 0 case, these 
q2 terms should be discarded, leading to the local field factor 

x = &,(q = 0) = (f.&. o))in. 
Unfortunately, this approximation fails for large B because it produces roots in the static 
dielectric constant. Thus, the q dependence of X must be taken into account for large 
magnetic fields. Paralleling the approximation made in the B = 0 case [19], we write 

X ( q )  = S A 1  + q2lS,,l/2n) + q i Y x c / U  +q:w. (17) 
The second term is roughly proportional to . UJ. According to the results of Vignale 
and Skudlarski [20] relative to the current J(q)  beyond the LDA, U,(q) decreases rather 
fast with qL1. To take this effect into. account, we have divided the LDA form of U,y(q) by 
(1 + q:12), where 1 is the magnetic length such that 

12 = f i /mw. 

The same damping factor has been appIied to U,,(q). With the form in (17) for X ( q )  the 
dielectric constant 

~ ( q )  = 1 - (4ne2/q2 + x(q))xo(q) 
has no zero anymore. But, clearly, a more fundamental study of the xc effects in the 
magnetic dielectric constant is called for. 

2.3. Explicit expression of the non-interacting response function 

The first complete analysis of the RPA response function of the electron gas in a magnetic 
field was performed by Greene and co-workers [14]. Many other studies of this function 
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have been reported more recently in the literature [15-171. Here we reproduce the most 
compact form of xo(q) adapted to numerical calculations: 

The summation over spin results in a factor o f  two included in (18). This expression 
involves a double sum on Landau band indices j and i; j runs over the occupied bands 
and i over all the bands. In the logarithm, the momenta are defined as 

(1% 

and similarly fork!. Note that the latter is a negative quantify fori z N.~The function Kij 
is defined for i > j by 

(20) 

where Lj-j is a generalized Laguerre polynomial. If i e j in the double sum, then the 
indices must be interchanged in Kij .  

It is clear from (18) that ,yo(q) is only a function of the reduced variable ql (the product 
of the wave vector with the magnetic length). Thus, the limit at large q is also the limit 
at large magnetic length, i.e. at small B. This means that the asymptotic form of x0(q)  
is that of the Lindhard function x'(q). We have checked this conclusion numerically. In 
fact, the convergence of the sum on i in (IS) is very slow. In figures 1 and 2 we see 
examples of how the~magnetic response function reduces to the Lindhard function at large 
values of s = . q l f .  If M is the maximum value of i that has to be included in the sum 
to reach convergence, M increases very fast with the value of s for which continuity is 
observed. For a given M ,  the value of s for which the asymptotic form is reached is rather 
insensitive to y = p / h o .  Thus, the wave vector above which the two response functions 
become equivalent is of the form q/kF = constantjn, where k F  is the Fermi momentum. 

k; = (2m/h2)(p - ( j  +f)ho) 1' = Z(p/hw - ( j  + a)) 

~ j j ( s )  = ( j ! / i  !)(sZ/~)'-j[~~-j(s2/~)1' exp(-s2/2) 

3. Calculation of the density displaced by a test charge 

3.1. Electmn densiry 

Starting from (13a) with the external potential SV,, of a point charge, we obtain the density 
in Fourier space: 

Figures 3 and 4 show the behaviour of F ( q )  (with qr = 0) in two typical cases. In figure 3, 
for r,r = 2, E = 0.2B0 (BO = 2.35 x IO9 G), there is a kink in the curve due to the existence 
of a peak in xo(q)  because two Landau bands are populated. In the case of figure 4 (r,? = 2, 
B =  BO), the Fermi level lies in the first Landau band so this effect does not appear. In 
coordinate space, the charge density is 

~ ~ 

where JO is the Bessel function, 1 the magnetic length, p the component of T perpendicular 
to B and z the component along B s is the component of ql perpendicular to B and t the 
component of ql along B. 
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Figure 1. The response function x"(q) for the magnetized electron gas at r, = 2 and 
BIB0 = 0.2, 3s a function of qLI. for q,l = 0. Several curves we presented (dashed lines) 
corresponding to increasing maximum valucs M (30. 60. 80 and 110) of the band index in the 
sum over excited Landau bands (see (18)). Full convergence is obtained for M + 03. The 
solid curve is the Lindhard asymptotic form. 

Figure 2. The m e  as figure 1. but far B/Bo = 2, 

For small values of the magnetic field, the trealment of large wave vectors is easier if 
the difference between F(q)  and its limit at zero field is introduced. This h i t  is obtained 



Point charge in magnetized electron gar 6551 

F( 

.as 

.a 

.E§ 

20 

.i5 

.10 

.os 

0. 

0 2 4 6 

Figure 3. The full density response function F(q) ,  such that 6n(q)  = F(q)6Vcx,(q) for the 
magnetized electron gas at r,, = 2 and BIB0 = 0.2. as a function of 411, for q,l = 0. 

Figure 4. The same as hgure 3. bur for B/Bo = 2. . .  

by replacing xo(p) with the Lindhard form xL(q)  in (21). Thus, the density becomes 
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Table 1. Values of the second-order energy 6E defined in (24). in Ha". and of the charge 
density 6n(0) on the test charge, in a,i3 (23). for various values of the electron density parameter 
rr and of the magnetic field N is the index of the highest populated Landau band. For the 
energy and the charge densiry, two series of numbers are shown, one with no exchange and 
correlation contribution in the response function (X = 0) and the other with the local field factor 
X ( q )  defined in (17). 

6E W O )  
7, BIB0 N ( X = O )  6E ( X  =0) Sn(0) 

1 0.0 -0,5863 
0.2 8 -0.5851 
0.5 3 -0.5927 
1.0 1 -0.5906 
2.0 0 -0.5872 

2 0.0 -0.3749 
0.2 1 -0.3720 
0.5 0 -0.3754 
1.0 0 -0.4597 
2.0 0 -0.5342 

3 0.0 -0.2853 
0.2 0 -0.2806 
0.5 0 -0.3464 
1.0 0 -0.3945 
2.0 0 -0.4332 

4 0.0 -0.2339 
0.2 0 -0.2570 
0.5 0 -0.3077 
1.0 0 -0.3398 
2.0 0 -0.3663 

5 0.0 -0.1998 
0.2 0 -0.2373 
0.5 0 -0.2747 
1.0 0 -0.2989 
2 0  0 -0.3200 

-0.6077 
-0.6063 
-0.6147 
-0.6124 
-0.6102 

-0.3963 
-0.3876 

~ -0.3982 
-0.5029 
-05944 

-0.3060 
-0.2997 
-0.3855 
-0.4467 
-0.5028 

~ -0.2538 
-0.2868 
-0.3509 
-0.3967 

~ -0.4388 

-0.2190 
-0.2699 
-0.3206 
-0.3580 
-0.3920 

0.3786 
0.3781 
0.3823 
0.3811 
0.3789 

0.08237 
0.08207 
0.082 17 
0.10370 
0.151 IO 

0.03335 
0.032 87 
0.04235 
0.06055 
0.091 26 

0.01748 
0.019 1 I 
0.028 26 
0.042 10 
0.06290 

0.01057 
0.01329 
0.02089 
0.031 19 
0.047 12 

0.3907 
0.3901 
0.3947 
0.3935 
0.3919 

0.08630 
0.08499 
0.08631 
0.11240 
0.16990 

0.035 30 
0.03465 
0.04658 
0.06942 
0.11040 

0.01864 
0.020 86 
0.03236 
0.050 74 
0.080 16 

0.01 I 34 
0.01486 
0.02486 
0.039 16 
0.061 73 

The last contribution, where j o  stands for the spherical Bessel function with U = ql, is 
calculated in spherical symmetry. The very large momenta, which are necessary for an 
accurate description of the density close to the test charge, are included with much less 
numerical effort, and the integration domain for the first contribution can be reduced. 

3.2. Second-order energy 

Using the CDFT formulation of section 2, it is easy to establish the expression of the test 
charge immersion energy in the magnetized electron gas. The first-order contribution (in 
6V,,) is the chemical potential p. The second-order contribution is 

The subtraction-addition technique described just above can also be used in the energy 
calculation when necessary. 
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Figure 5. The second-order embedding energy of the point charge in the magnetized electron 
gas, in Hatree units, as a function of B I B 0  and for five values of r8 (1, 2, 3. 4 and 5). Solid 
curves join points having the same highest populated Landau band only. 

Figure 6. The charge density induced in the magnetized electron gas. as n function of dismce 
in units of the magnetic length, at r, = 2 and BIB0 = 2. The four highest curves correspond 
to four directions with respect t o ~ B ( 8  = 0). The lowest curve shows the density in the absence 
of P magnetic held. 

3.3. The non-spherical shape of the densiry 

We arrive here at the motivation of this study: the non-spherical deformation of the density 
induced by the magnetic field. The density h(r )  calculated as described above is analysed 
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Figure 8.  The difference bemeen h e  chuge denstrier with and wirhour mapcuc field. a[ 
r ,  = 2 and E / &  = 2. dong four dircaions at angles U = 0. ~ 1 6 ,  7 , 3  2nd n, 2 with the field. 

in Legendre polynomials. At a given distance from the test charge, one writes 
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Figure 9. The same as figure 8. but for BIB0 = 0.2. 

3 2  rlQQ a. 

3 

2 

1 

0 

0 0.5 1 1.5 B~ 2 

Figure 10. The ratio of the coefficient a2 of the first non-spherical Legendre polynamial  in^ 
the expansion o f  the charge density to the spherical component coefficient an (see (25)). vems 
magnetic field B /Bo and for the five values of Q. Tk distance at which the expansion is done. 
is r = &l2. 

where 0 is the angle between T and the magnetic field. This expansion involves even angular 
momenta only. The ratio of the coefficients a, to a0 gives a measure of  the non-sph.erical 
shape of the density. 
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Table 2. The non-sphericity of the charge density displaced around a test charge in a magnetized 
elearon gas. The electron gas parameter is r,?. The magnetic field is E in units of Bo. The 
charge density is expanded in Legendre polynomials with coefficients a, ( I  even). The ratios 
oz(r)/no(r) x 100 (first row) and a&-)/&) x 100 (second row) m shown for three distances 
r/r,  from the rest charge. 

r,v E / E o  r/r,  =05  rjr? = 1.0 rjr, = 1 5  

1 0.2 -0.0079 0.0002 -0.0000 -0,0001 0.0070 0.0033 
0.5 0.0363 -0.0001 0.0260 -0,0022 -0,0424 -0.0203 
1.0 0.0017 -0.0024 -0.1592 -0.0300 -0.2539 -0,0821 
2.0 -0.1205 -0.W78 -0.7172 -0.0742 -0.8964 -0.0968 

2 0.2 -0.0020 -0.0006 0.0121 -0.0025 0.0366 -0.0006 
0.5 -0.0082 -0,0019 -0.1164 -0.0192 -0.1526 -0.0304 
1.0 0.6921 0.0272 0.8995 0.1427 02729 0.0854 
2.0 3.5363 0.4944 2.8790 1.9797 0,4127 1.2595 

3 0.2 -0.0040 -0.oo04 -0.0308 -0.ooi9 -0.0292 0.0029 
0.5 0.3762 0.0220 0.4400 0.1198 0.0997 0.0993 
1.0 1.6142 0.2813 0.9618 0.9077 0.0399 0.3982 
2.0 3.8058 1.5169 0.8317 1.6102 0.0252 0.3380 

4 0.2 0.0656 0.0009 0.0687 -0.0003 0.0043 -0.0164 
0.5 0.6495 0.1~023 0.4018 0.3561 0.0024 0,.1579 
1.0 1.6397 0,6015 0.3409 0.7028 -0.0061 0.1244 
2.0 2.3485 1.8235 0.3258 0.7088 -0.0095 0.1122 

5 0.2 0.1428 0.0114 0.1369 0.0570 0.0124 0.0409 
0.5 0.7130 02037 0.1843 0.3425 -0.0104 0.0600 
1.0 1.2175 0.7718 0.1568 0.3660 -0.0113 0.0497 
2.0 1.3141 1.4157 0.1507 0.3701 -0.0127 0.M47 

4. Results 

We have performed calculations for a test charge immersed in an electron gas of density 
corresponding to values of the electron parameter r,? = 1, 2, 3, 4 and 5, and for values of 
the magnetic field (in units of BO =~2.35 x IO9 G) BIB0 = 0.2, 0.5, 1 and 2. The values 
of the chemical potential p corresponding to these parameters are shown in the appendix, 
together with the description of an analytical approximation for y = p j h ,  as a function 
of density, which simplifies the calculation. 

The results obtained for the second-order energy SE defined in (24) are shown in table 1, 
with and without x c  effects in the response function (i.e. X = 0 in the second case). As a 
general rule, the magnitude of SE increases with the field, as displayed in figure 5. There 
is a discontinuity in this energy as a function of B each time a new Landau band begins to 
be populated, because xo(q  = 0) is singular for the corresponding values of the field. Also, 
it is clear that the higher the density the weaker the relative change in energy because the 
rigidity of the system increases with the density. The effect of exchange and correlation on 
SE is important. At zero field, the xc effect goes from 3.7% at r,, = 1 to 9.6% at r, = 5, 
but for the maximum field B / B o  = 2, it increases from 3.9% at r, = 1 to 22.5% at r.r = 5. 

The charge density on the test charge Sn(0) is also shown in table 1. The trends are 
the same as for the energy. The effect of the field is small at r,? = 1, but considerable at 
r,? = 5, where Sn(0) changes by a factor 5.5 from BIB0 = 0 to 2. The xc effect is also 
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Figure 11. The same as figure 10, but for the coefficient (14. 
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enhance we found that the 
careful treatment of large wave vectors in the response function is crucial in order to obtain 
an accurate density at the nucleus. If the numerical cut-off on q is too low, the density 
is underestimated and approaches the point charge with a zero slope instead of a finite 
slope, because the exact q-' decay of the response function is replaced with an erroneous 
exponential decay. In figure 6 we see the charge density Sn(r) around the test charge as 
a function of distance r/Z for r,T = 2 and BIB0 = 2. In this case, 1 = 0.707 au. There 
are four curves comesponding to the angular directions 8 = 0 (along k), n/6, n/3 and 
rr/2 (perpendicular to B). A last curve represents the charge density in the absence of a 
magnetic field. The effect of the field is very strong, as proved by the important differences 
between the curves with and without B. The density decreases much more slowly in the 
z direction, as already shown by Tomishima and Shinjo in the Thomas-Fermi theory for 
atoms in a strong magnetic field with inhomogeneity corrections [8 ] .  In the present case, 
the non-spherical shape of the density is obvious and is a dominant character of the physical 
system. In figure 7, we have displayed the same curves, but for B/BO = 0.2, still at r,r = 2. 
The situation is entirely different for this low-field the curves with and without field are 
almost identical. The differences &(r, B )  - Sn(r, 0) are magnified in figures 8 and 9. 

The analysis of the non-sphericity in the charge density is shown in table 2. The ratios 
u&r)/u,,(r) x 100 and q ( r ) / a o ( r )  x 100, at three distances I from the test charge, are given 
for all the r,9 and E values considered in this study. These ratios increase with E, although 
a saturation occurs in a*(r)/uo(r) at BIB0 = 1 for r,T = 4 and 5, probably in favour of 
higher angular momenta in the expansion of (25). This effect appears clearly in figures 10 
and 11, where the ratios are shown for r/Tr = 0.5. For magnetic fields not exceeding BO. 
the non-sphericity is small at r,y = 1. It increases very fast~with r,T. If one chooses the 
onset of significant non-sphericity when the ratios reach the value of 1% for r/r,v = 0.5, 
this onset occurs around B = Bo (1 au) for any value of r,r. 

It appears from the results reported above that, in the domain of metallic densities and 

rt low density and large field. For all the cases listed here, we 
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for magnetic fields larger than the reference field BO, the non-spherical shape of the electron 
charge is an important physical feature. This feature should be treated accurately in any 
model dealing with the modifications brought by such high magnetic fields to the structure 
of dense electronic systems. For lower fields, a perturbation approach is sufficient. 

Appendix A. An analytical approximation for the chemical potential as a function of 
density 

The electron density n of a uniform electron gas in a magnetic field is related to the chemical 
potential fi by 

F Perrot arid A Grimldi 

where q is the Bohr radius, w the cyclotron frequency, EO the electrostatic energy e2 fa0 

and 

y = &/Tim. (A2) 

x = n ( x 2 / f i ) ( ~ o / h ~ ) 3 1 2  (A31 

N is the index of the highest occupied Landau band. Defining the reduced density 

we have obtained expressions for y = ~ N ( x ) .  First, it is easy to derive emcl expressions 
for the two lowest bands. In the case N = 0 we have 

y = 1 +X' 

and in the case N = 1 

y = 3 2 + (x' - 1)2/4x2. 

For larger values of N ,  we have derived accurate approximate expressions. First, for a 
given N ,  one can see that, for x very larse, y behaves as 

y = [ I / ( N  t 1)2]xz + 0 ( x o ) .  

At the bottom of band N ,  one has obviously 

y = YN + (x  - xN)' +constant 

with 

Now, when a new band opens, one must have 

Y N  + 1 = ~ N ( x N + I ) .  

The simplest expression satisfying all these constraints is 

Y Y N  + [ ( X 2  - X ; ) ' / 4 X 2 ] [ b ~  +4a~(X'  - X : ) l / [ b ~  + C?N(X2 - 4 1 1 .  L45) 

(Ab) 

XN and Y N  are defined in (A4).  The other constants are 

U N  = 1 / ( N  + 1)' 
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(As) is general and includes also the cases N = 0 and 1. We have checked its numerical 
accuracy up to N = 9. ‘ A n  average error EN in each band is defined as follows. In 
a given band N ,  we use a mesh of hundred points for the variable y defined in (A2): 
y, = YN + q/lOO (q = 1-100). For each of these y,. we calculate the corresponding 
density xy (AI), and then the approximate value of y = f&,) (A5). The average relative 
error in band N is 

The values of these errors are shown in table Al .  They are of the order of loT3 in the 
highest hand considered. Thus, the numerical fit proposed is accurate enough for practical 
applications. It avoids the numerical solution of an implicit equation to obtain y. Once the 
reduced density is given, the index N of the Landau band is determined by location of x 
according to X N  < x < XN+,,  and then y is explicitly calculated from the approximant in 
W). 

Table Al.  

N Y N  I O 3 w  

2 2.5 0.035 
3 3.5 0.423 
4 4.5 0.729 
5 5.5 0.916 
6 6.5 1.02 
7 7.5 1.07 
8 8.5 1.08 
9 9.5 1.07 

The values of the quantity y - i, related to the chemical potential. for all the cases 
studied in this work are listed in table A2. 

1 8.728 3.157 1.284 0.347 
2 1.901 0.347 0.434(- 1) 0.542(-2) 
3 0.476 0.305(-1) 0.381(-2) 0.476(-3) 
4 0.847(-1) 0.542(-2) 0.678(-3) 0.847(-4) 
5 0.222(-1) 0.142(-2) 0.178(-3) 0.222(:4) . 
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